(12)

US009164766B1

United States Patent
Wong et al.

US 9,164,766 B1
Oct. 20, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)
(1)

(52)

SYSTEM AND METHOD FOR HARDWARE
ASSISTED STACK

Inventors: Aron L. Wong, Mountain View, CA
(US); Dennis K. Ma, San Jose, CA
(US); Jonah M. Alben, San Jose, CA
(US); Mark S. Krueger, New Berlin,
WI (US); Jeffrey J. Irwin, Sunnyvale,

CA (US)

Assignee: NVIDIA Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 2457 days.

Appl. No.: 11/102,189

Filed: Apr. 8,2005

Int. Cl.

GO6F 9/30 (2006.01)

U.S. CL

CPC .o, GO6F 9/30134 (2013.01)

START RUNNING

VBIOS CODE 302

(58) Field of Classification Search

None

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,516,410 B1* 2/2003 Hellercoooeviiniinn. 713/2
7,287,140 B1* 10/2007 Asanovic et al. 711/163
7,320,125 B2* 12008 Elliottetal. 717/131
2003/0217255 Al* 11/2003 Wyattocooovvvviviinninnnn. 713/100

* cited by examiner

Primary Examiner — Maurice L McDowell, Jr.
(74) Attorney, Agent, or Firm — Artegis Law Group, LLP

(57) ABSTRACT

Methods and apparatus for providing additional storage, in
the form of a hardware assisted stack, usable by software
running an environment with limited resources. As an
example, the hardware assisted stack may provide additional
stack space to VBIOS code that is accessible within its limited
allocated address space.

17 Claims, 7 Drawing Sheets

PREPARE HARDWARE ASSISTED [~ ~310

GET NEXT ROUTINE

T

DOES
ROUTINE REQUIRE
SIGNIFICANT SHARED
STACK SPACE?

YES

PERFORM ROUTINE
NORMALLY

— 308

318

YES MORE

STACK FOR OFFLOADING DATA

OFFLOAD DATA FROM SHARED
STACK TO HARDWARE ASSISTED
STACK

— 312

PERFORM ROUTINE

h 314

RESTORE DATA FROM HARDWARE [316

STACK TO SHARED STACK

ROUTINES?

320

US 9,164,766 B1

Sheet 1 of 7

Oct. 20, 2015

U.S. Patent

05~ a¥vD aNNOS |e——

N HOLINOW <

(
* Nopl

2oyl |
)

C JOLINOW <

| HOLINOWN [

)

Loyl

004

— Vil

—Cll

~—0L1

l ‘OIld
MOVLS
(0d1N) ~—z¢ccl
a3.1sISsyY)
IYVMAYVYH /
SY3LSIOAY || - pgy
JOHLNOD
0zl 8Ll
(S)LINN))
ONISSIO0¥d JOV4Y4ALNI aAINa
SOIHdVYD [~ 0Fl o/l »sia WYH90dd
» \ » NOILYOINddY |
v INJLSAS
801 ONILYHIdO |
91 ~—H SOIgA (s) NdD o%dﬁwm
201 L sog]] AHOWIN
091 — Wo¥ 20l v0l

US 9,164,766 B1

Sheet 2 of 7

Oct. 20, 2015

U.S. Patent

¢ 9l4
00
00 .
. \
. \
) \
\
\
™ \
(030) n_on; ot : \
2 Al:M:lalMl
Y3LINIOd R
(ONI) HSNd dOd
06
\\
- y 16
[]
[] \\
/
/
14 /
7 OdITMH
zel
44
4
el

viva X3ANI
Saexo ¥aexo
|
° + |
™ ||
o _ _
||
[
||
||
||
||||||||||||] w
|}
SNLYLS +e———— MO14N| MOT4N]| e e e
®
. Y31SI193Y TOYLNOD
_ A318YN3[TVNNVYA| oLnY
LT
HINd le— — — H31LNIOd
[]
®
®
SH31S193Y
10¥1INOD

~——8¢l

SYH31SIOTY
a3.19310dd

US 9,164,766 B1

Sheet 3 of 7

Oct. 20, 2015

U.S. Patent

€ 9ld
ON
¢SaANILNOY
JHONW S3A
8L
MOVLS QIFUVHS OL MOVLS
91¢ — 1 THYMAYVH WO¥4 V.iva IHOLSTY
ATIVINHON
80€ — 3ANILNOY WHOI¥3d
pLE - aANILNOY WHO4¥3d
¢30VdS MOVIS
MOVIS A3YVHS INVIIHINDIS
Q3LSISSY IUYMA¥VYH OL MOVLS 34INO3Y INILNOY
Zie — Q3¥VHS WON4 Y1va avo1440 sS30d
90€
V1va ONIQYO1440 ¥04 MOVIS $0E — ANILNOY LX3N 139
0Le — | Q3LSISSV IYVYMAHVH IHVdINd

30030 SOIgA

coe ONINNNY LHVLS

U.S. Patent Oct. 20, 2015 Sheet 4 of 7 US 9,164,766 B1

402 —1 GET POINTER TO CURRENT
LOCATION IN SHARED STACK

404 —~ POINT INDEX 1/0 LOCATION
TO HARDWARE ASSISTED
STACK

406 — COPY DATA FROM SHARED

STACK TO HARDWARE
ASSISTED STACK

STRING
MOVE
410 INSTRUCTION

YES

412

FIG. 4A

U.S. Patent Oct. 20, 2015 Sheet 5 of 7 US 9,164,766 B1

422 —1 GET POINTER TO CURRENT
LOCATION IN SHARED STACK

424 —~ POINT INDEX I/O LOCATION
TO HARDWARE ASSISTED

STACK
426 — COPY DATA FROM
HARDWARE ASSISTED STACK
TO SHARED STACK
STRING
430 MOVE
INSTRUCTION

YES

432

FIG. 4B

US 9,164,766 B1

Sheet 6 of 7

Oct. 20, 2015

U.S. Patent

00

8015

44

dg Old

(01) viva

(1) viva

(01) LY3LNNOD

(02) vLva

(1) viva

(02) 2Y3LNNOD

AJVLS MH

(1 HSNA)
S31A9 01

(Z HSNA)
S31A8 02

~

8215

00

Yols

44

VG Old

(0v) v1va

(1) viva

(01) LY3LNNOD

AJVLS MH

(1 HSNA)
S31A9 0l

~

Vais

U.S. Patent Oct. 20, 2015 Sheet 7 of 7 US 9,164,766 B1

64K
Ok
0 |=— VBIOS RUNNING ——| T
FIG. 6A
(PRIOR ART)
64K
Ok

0 |—=— VBIOS RUNNING —= T

FIG. 6B

US 9,164,766 B1

1

SYSTEM AND METHOD FOR HARDWARE
ASSISTED STACK

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to shared stacks in com-
puting devices and more specifically to a system and method
for a hardware assisted stack that may alleviate demands on a
shared stack.

2. Description of the Related Art

Under the typical operating environment of a personal
computer (PC), when the PC is powered up, it undergoes a
boot process. This boot process typically involves one or
more self-tests and executing a boot program stored perma-
nently in read only memory (ROM) that contains the PC’s
basic input/output system (SBIOS) code. The SBIOS code
typically performs a number of initialization routines (e.g.,
initializing main memory, disk drives, etc.) that prepare the
system for normal usage.

The SBIOS may also call other routines in ROM (referred
to as Option ROM functions) to perform various initialization
routines. The routines to initialize a display device, com-
monly referred to as the video BIOS (or VBIOS) is one
example of such an Option ROM. There is no standard speci-
fication which guarantees the amount of writeable memory
(stack) space for Option ROMs. Therefore, when calling an
Option ROM function, such as VBIOS, adequate local stack
space must be provided for the ROM functionality to operate
properly.

Unfortunately, there is typically only a limited amount of
stack space available as a shared resource to all processes
running at any given time. The amount of stack space required
to be passed to the VBIOS is not typically defined, and a
certain level of compatibility is typically empirically con-
firmed by execution of a number of existing (or “legacy”)
software/hardware configurations. Newer products typically
are designed to be backwards compatible with many legacy
system configurations. Thus, the design typically includes
empirically checking that the VBIOS does not exceed the
stack usage limitations of these legacy configurations.

However, increasingly complex support requirements of
newer PC configurations beyond the original IBM VGA
design (e.g., to support multiple display heads, flat panels,
high definition television-HDTYV displays, and the like) have
resulted in more complex software in the VBIOS. This
increase in complexity tends to conflict with the stack usage
limitations of legacy systems, as more stack space is required.
In other words, the code added to VBIOS to support these
increasingly complex requirements tends to consume more
and more of a very limited resource (the stack) that all the
software running in that environment has to share.

Eventually, a collision may occur where some software
code runs out of stack space with potentially catastrophic
effects. For example, return addresses pushed onto the stack
may be lost such that programs that made calls to routines
may not be able to return to the proper location in the code
(from where the call was made), other types of precious data
may be lost, and the PC may be rendered unusable. Access to
additional memory resources that could be used by the
VBIOS to accommodate increased stack requirements are
limited, as the VBIOS execution environment does not allow
for dynamic memory allocation from which a new stack may
be created.

Accordingly, what is needed is a method and system to
provide additional stack space in systems with limited shared
stack resources.

10

15

20

25

30

35

40

45

50

55

60

65

2
SUMMARY OF THE INVENTION

One embodiment provides a method of reducing the
impact of software code on a shared stack of a computing
system in which the software code is running. The method
generally includes, prior to executing a portion of the soft-
ware code, offloading a portion of data from the shared stack
to a hardware assisted stack mapped to an address space
accessible to the software code, executing the portion of the
software code, and subsequently, restoring the offloaded por-
tion of data from the hardware assisted stack to the shared
stack.

Another embodiment provides an integrated circuit (IC)
device generally including a hardware assisted stack with a
plurality of storage locations and interface circuitry. The
interface circuitry is generally configured to detect externally
supplied write operations targeting a specified input/output
(I/0) location and, in response, push data contained in the
write operations onto the hardware assisted stack, and to
detect externally supplied read operations targeting the same
or a different specified I/O location and, in response, pop data
from the hardware assisted stack and return the popped data.

Another embodiment provides a system generally includ-
ing at least one central processing unit (CPU), one or more
software code portions executable by the CPU, a shared stack
accessible by the software code portions, and a hardware
assisted stack mapped to an address space accessible to at
least a first one of the software code portions. The first soft-
ware code portion is configured to, during its execution by the
CPU, offload data from the shared stack to the hardware
assisted stack.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of
the present invention can be understood in detail, a more
particular description of the invention, briefly summarized
above, may be had by reference to embodiments, some of
which are illustrated in the appended drawings. It is to be
noted, however, that the appended drawings illustrate only
typical embodiments of this invention and are therefore not to
be considered limiting of its scope, for the invention may
admit to other equally effective embodiments.

FIG. 1 illustrates an exemplary system utilizing a hardware
assisted stack, according to one embodiment of the present
invention;

FIG. 2 illustrates 1/O location mapping of a hardware
assisted stack, according to one embodiment of the present
invention;

FIG. 3 is a flowchart of exemplary operations for minimiz-
ing the impact of a portion of code on shared stack space
utilizing a hardware assisted stack, according to one embodi-
ment of the present invention;

FIGS. 4A and 4B are flowcharts of exemplary operations
for offloading data to and restoring data from, respectively, a
hardware assisted stack, according to one embodiment of the
present invention;

FIGS. 5A and 5B are diagrams illustrating storing house-
keeping information in a hardware assisted stack, according
to one embodiment of the present invention; and

FIGS. 6A and 6B are diagrams of shared stack space con-
sumption of code with and without utilizing a hardware
assisted stack.

DETAILED DESCRIPTION

Embodiments of the present invention provide additional
storage, in the form of a hardware assisted stack, usable by

US 9,164,766 B1

3

software running in an environment with limited resources.
For example, the hardware assisted stack may provide addi-
tional stack space to VBIOS code that is accessible within its
limited allocated address space. By having hardware assist in
management of the storage space, the VBIOS can effectively
‘switch stacks’ from a shared stack to the hardware assisted
stack during runtime. The hardware assistance may include
managing the hardware assisted stack pointer so that the
VBIOS does not need to explicitly track the number of items
in the stack and/or manually adjust the stack pointer.

As used herein, the term stack generally refers to a storage
mechanism that operates in a last-in first-out (LIFO) manner.
In other words data most recently placed (or “pushed”) onto
the stack is the first data to be removed (or “popped”) from the
stack. A pointer mechanism indicates a current location in the
stack to which data will be pushed or from which data will be
popped. As a result, a location does not need to be specified
when pushing or popping data to/from the stack. The follow-
ing sequence illustrates the operation of a stack:

push D1 //pushes D1 on the stack at pointer location

push D2 //pushes D2 on the stack at next location

pop //returns D2 from the stack

pop //returns D1 from the stack

To facilitate understanding, embodiments of the present
invention will be described below with reference to a hard-
ware assisted stack integrated within a graphics processing
unit (GPU) that is accessible by VBIOS code as a particular,
but not limiting, application example. However, such a hard-
ware assisted stack may also be provided as a standalone
device or within any other type of (non-graphics) device, such
as a device in a chipset, memory controller, memory device,
central processing unit (CPU), or the like, to provide addi-
tional storage to any type of code running in a possibly
resource limited environment.

An Exemplary System

FIG. 1 illustrates an exemplary computer system 100 in
which embodiments of the present invention may be utilized.
As illustrated, the system 100 may include one or more cen-
tral processing units (CPUs) 102. During a boot process of the
system 100, the CPU 102 may load and execute System BIOS
code (SBIOS) 162 stored in read-only memory (ROM) 160.
The ROM 160 may be any suitable type read-only memory,
for example, including one time programmable read-only
memory (OTPROM) or programmable flash memory, which
would allow for updates.

This SBIOS code 162 may include routines to initialize
various components of the system 100, such as a disk drive
118, 1/O interface 120, and sound card 150, to prepare them
for operation in the system 100. The CPU 102 may also load
and execute video BIOS (VBIOS) code 164 in order to ini-
tialize and configure one or more display devices, such as
monitors 140, ,.controlled by aGPU130.VBIOS code 164
may also be located in ROM 160 (or a separate ROM) and, in
some cases, could be part of or called from SBIOS code 162.
In some cases, VBIOS code may also be provided separately,
for example by a vendor of a graphics card including the GPU
130.

All the different pieces of software (e.g., SBIOS 162 and
VBIOS 164) may be running at one time during startup and
may make calls to each other to interact in various ways. One
universal resource that is typically shared when running in
startup (real) mode is the stack 104. In a typical VBIOS
operating environment, the stack 104 is no more than 64K
bytes, and there tends to be much less than the total amount
actually available for use. In startup mode, system memory

5

10

15

20

25

30

35

40

45

50

55

60

65

4

110 (eventually used to load and execute an operating system
112 and application programs 114) is not yet initialized or
controlled by a modern operating system, so all the pieces of
code typically has to share this relatively small stack 104.

As previously described, in standard BIOS specifications,
Option ROMs, such as VBIOS 164 are not guaranteed any
dedicated writable memory (stack) space. However, the rela-
tively complex initialization functions the VBIOS may need
to perform (e.g., to prepare the monitors 140 for display) may
require a substantial amount of stack space. For some
embodiments, in an effort to provide an additional amount of
stack space and reduce the amount of the shared stack 104
consumed by VBIOS 164, a hardware assisted stack (HW
stack) 132 may be provided. Due to the typically limited size
of the shared stack 104, the HW stack 132 may be virtually
any size and still be useful. For example, an HW stack with
256 bytes may greatly reduce the impact on a 64 kb shared
stack.

Providing Access to the Hardware Stack

As the VBIOS runs in real-mode, where only 16-bit
memory addresses are directly generated and there is no
memory mapping support, some sort of mechanism may be
provided to allow access to the HW stack 132 within the
limited address range available to the VBIOS (i.e., the VBIOS
is typically only allowed to “touch” certain resources). One
approach, illustrated in FIG. 2, is to map the HW stack 132 to
one or more [/O locations commonly used by the VBIOS.

For example, the VBIOS commonly uses /O locations
0x3D4 and 0x3D5 when accessing a color adapter of a VGA.
The VGA may be designed such that the VBIOS may write an
index to location 0x3D4 and data may be written to or read
from location 0x3D5. In other words, assuming an 8-bit index
written to location 0x3D4, the VBIOS may have access to 256
byte line registers 134 of the GPU. A write to location 0x3D5
stores data in the register pointed to by the index written to
location 0x3D4, while a read from location 0x3D5 reads data
from the indexed register. While not shown, circuitry on GPU
may detect these writes/reads and access the HW stack
accordingly.

For one embodiment, the HW stack 132 may be made
accessible to the VBIOS in this manner. For example, refer-
ring to FIG. 2, a control register 0x90 (CR90) in the GPU may
provide access to the HW stack 132. In other words, to access
the HW stack 132, the VBIOS may point to CR90 by writing
an appropriate value to the index location 0x3D4. Data writ-
ten to CR90 (by writing to location 0x3D5) may then be
automatically pushed onto the HW stack 132, while data read
from CR90 (by reading from location 0x3D5) may be auto-
matically popped from the HW stack 132.

In some cases, the HW stack 132 may be placed in an
automatic mode (e.g., by writing to one or more other control
registers CTRL1 and/or CTRL.2 of the GPU) where a pointer
136 to a current position in HW stack 132 is automatically
incremented on a push and automatically decremented on a
pop. The HW stack 132 may also be operated in a manual
mode where the pointer is incremented or decremented
manually. Operating the HW stack 132 in the automatic mode
may be preferable in many cases, as it will result in reduced
software execution times, as the VBIOS can take advantage of
high speed string move instructions which allow cycling
through a very quick loop of writes/reads to transfer data
to/from the HW stack 132.

In some cases, access to the HW stack 132 may be enabled/
disabled via one or more control registers 138 on the GPU.
One or more bits of the control register 138 may be written to

US 9,164,766 B1

5

enable/disable access to the HW stack 132. In other words,
circuitry on GPU that detects writes to the HW stack 132 may
ignore these writes if access is disabled, while another one or
more bits may be written to select an automatic mode where
the pointer is automatically adjusted when pushing or pop-
ping data or to select a manual mode where the pointer is
manually adjusted.

In some cases, measures may be taken to reduce the like-
lihood of other software components inadvertently accessing
the HW stack 132 concurrently with the VBIOS, which may
have catastrophic effects by modifying stack contents and/or
the pointer. For example, the VBIOS may write to a control
register to enable access to the HW stack 132, quickly offload
data from the shared stack and subsequently disable access.
To restore the data from the HW stack 132 to the shared stack,
the VBIOS may again enable access, quickly restore the
previously offloaded data, and subsequently disable access.

In some cases, the control registers used to enable access to
the HW stack 132 may be protected registers, meaning they
are not readily or directly accessible to other software com-
ponent in the system. For example, these registers may be
accessible only via relatively complex interface mechanism,
which may significantly reduce the likelihood of other soft-
ware components inadvertently enabling (and subsequently
accessing) the HW stack 132.

Other registers may also be provided for diagnostic pur-
poses. For example, the pointer may be mapped to a control
register where it can be quickly read to determine the location
to which it is currently pointing. Further, a status register
(illustratively shown as CR91) may be provided with error
flags that gives some indication, for example, of stack over-
flow (pushed more data than the stack will hold) or underflow
(popped more data than was pushed).

Offloading Data to the Hardware Stack

FIG. 3 is a flow diagram of exemplary operations illustrat-
ing how the VBIOS may utilize the hardware stack to reduce
its impact on the shared stack. At step 302, the VBIOS code
starts running and, at step 304, the next (first) routine is
retrieved. If the routine does not require a significant amount
of'shared stack space, as determined at step 306, the routine is
performed normally, at step 308 (i.e., without offloading data
to the HW stack). In some cases, this determination may
actually be made by software developers who may insert
offloading and restoring operations into the code accordingly.

For example, if the routine requires only a few bytes of
shared stack space, the extra I/O cycles required to offload
data to the HW stack may not be warranted. On the other
hand, if the routine does require a significant amount of
shared stack space, offloading data from the shared stack to
the HW stack may be warranted and may reduce the likeli-
hood of the system exceeding the shared stack.

Therefore, at step 310, the HW stack is prepared for oft-
loading data. For example, as previously described, the
VBIOS may enable access to the HW stack by writing to one
or more control registers and configure the HW stack for
automatic or manual mode. At step 312, data is offloaded
from the shared stack to the HW stack. At step 314, the routine
is performed. After performing the routine, data from the HW
stack is restored to the shared stack, at step 316. While not
illustrated, the VBIOS may disable access to the HW stack
immediately after offloading or restoring data, in an effort to
reduce the chances of another routine inadvertently accessing
the HW stack.

If'there are more routines to be performed, as determined at
step 318, the operations 304-316 may be repeated. Otherwise,

10

15

20

25

30

35

40

45

50

55

60

65

6

if there are no more routines to be performed (e.g., no more
VBIOS code to execute) the operations may terminate, at step
320.

FIGS. 4A and 4B illustrate exemplary operations for off-
loading data to the HW stack and restoring data from the HW
stack, respectively. While not illustrated, these figures assume
that access to the HW stack has been enabled.

Referring first to FIG. 4A, the offloading operations begin,
at step 402, by getting a pointer to the current location in the
shared stack. At step 404, the VBIOS points the index 1/0O
location (e.g., location 0x3D4) to the HW stack (e.g., CR90).
A loop of operations 406-410 is then entered to transfer the
data (e.g., one byte at a time) from the shared stack to the HW
stack. As illustrated, for some embodiments, the loop of
operations 406-410 may be performed automatically as part
of'a string move instruction. String move instructions are very
basic loop instructions that are available in real mode to move
strings of data from one location to another. An advantage to
using these instructions is that the CPU cannot typically be
interrupted during their execution.

At step 406, a byte of data is copied from (popped oft of)
the shared stack (and pushed on) to the HW stack. As previ-
ously described, pushing the data onto the HW stack may
simply involve writing the data to an I/O location (e.g.,
0x3D5). If the HW stack was configured for automatic mode,
the pointer may be automatically incremented to point to the
next location. Otherwise, the pointer may need to be manually
incremented (e.g., by performing another I/O operation to
write to another control register). In either case, if there is
more data to offload, as determined at step 410, these offload
operations may be repeated. Otherwise, the offload opera-
tions are terminated, at step 412.

Referring next to FIG. 4B, the restoring operations begin,
at step 422, by getting a pointer to the current location in the
shared stack. At step 424, the VBIOS points the index 1/O
location to the HW stack. A loop of operations 426-430 is
then entered to restore the data from the HW stack to the
shared stack. At step 426, a byte of data is copied from
(popped off of) the HW stack (and pushed on) to the shared
stack. As previously described, popping the data from the
shared stack may simply involve reading data from the 1/0O
location (e.g., 0x3D5).

Again, ifthe HW stack was configured for automatic mode,
the pointer may be automatically decremented to point to the
next location. Otherwise, the pointer may need to be manually
decremented. In either case, if there is more data to restore, as
determined at step 430, these restoring operations may be
repeated. Otherwise, the restore operations are terminated, at
step 432.

In some cases, VBIOS operations may be nested, resulting
in multiple offloads to the HW stack before any data is
restored. In other words the data from one offload may be
pushed onto the HW stack on top of the data from a previous
offload. When restoring this data, the software should know
how much data was offloaded each time in order to restore the
correct amount. For some embodiments, when offloading
data, some type of “housekeeping” data may also be pushed
onto the HW stack to assist software when restoring the data.

For example, as illustrated in FIG. 5A, a counter 510 , may
be pushed onto the HW stack that indicates a number of bytes
of data 512, that has just been offloaded from the shared
stack. When a subsequent offload occurs, resulting in addi-
tional amount of data 512, being pushed on top of the data
512 ,, another counter 510 can be pushed to reflect the num-
ber of bytes of that data. When subsequently restoring this
data (e.g. in separate restore operations), these counters can
be popped off the HW stack and read by the software to

US 9,164,766 B1

7

determine how many additional bytes were previously oft-
loaded and need to be restored.

The impact of utilizing the HW stack to offload data is
illustrated in FIGS. 6 A and 6B which illustrate shared stack
space consumption with and without offloading data to the
HW stack, respectively. As illustrated in FIG. 6A, as the
VBIOS is running, the stack space consumption will gener-
ally tend to increase, for example, as different VBIOS rou-
tines continue to add data onto the shared stack.

As illustrated in FIG. 6B, however, if data from the shared
stack is offloaded periodically (e.g., prior to performing rou-
tines that require a significant amount of shared stack space),
the maximum amount of stack space consumed at any given
time may be significantly reduced. In other words, before an
additional amount of data is added to the shared stack (a very
limited resource) when performing a particularly complex
routine, a portion of data already existing on the stack is
offloaded to the HW stack while that routine is performed.
The shared stack space consumed by the routine will already
be freed up before the offloaded data is restored. Fortunately,
programmers can readily identify routines that will likely
require significant amount of shared stack space and can add
appropriate offload and restoration operations to the VBIOS
(or any other type) code.

While the foregoing is directed to embodiments of the
present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

The invention claimed is:

1. A method of reducing the impact of a first software
routine on a shared stack of a computing system in which the
first software routine is running, comprising:

determining that the first software routine accesses a larger

portion of data stored in the shared stack relative to other
software routines executing within the computing sys-
tem;

enabling access to a hardware assisted stack;

prior to executing the first software routine, offloading the

larger portion of data from the shared stack to the hard-
ware assisted stack mapped to an address space acces-
sible to the first software routine;
pushing a counter onto the hardware assisted stack that
indicates the size of the larger portion of data;

disabling additional access to the hardware assisted stack
such that only the first software routine is able to access
the hardware assisted stack;

executing the first software routine;

identifying the larger portion of data offloaded to the hard-

ware assisted stack based on the counter pushed onto the
hardware assisted stack; and

restoring the larger portion of data from the hardware

assisted stack to the shared stack when the first software
routine is executed.

2. The method of claim 1, wherein:

the hardware assisted stack resides on a graphics process-

ing unit (GPU); and

the first software routine comprises video basic input/out-

put system (VBIOS) code.

3. The method of claim 1, wherein the offloading com-
prises:

writing an index value to a first input/output (I/O) location

to point to the hardware assisted stack; and

repeatedly writing data popped from the shared stack to a

second 1/0O location to push that data onto the hardware
assisted stack.

10

15

20

25

30

35

40

45

50

55

60

8

4. The method of claim 3, further comprising:

placing the hardware assisted stack in an automatic mode
wherein a pointer to the hardware stack is automatically
adjusted each time data is pushed on the hardware
assisted stack.

5. The method of claim 1, further comprising:

accessing one or more registers of a device on which the

hardware stack resides to determine an error status of the
hardware stack.

6. The method of claim 1, wherein enabling access to the
hardware assisted stack comprises writing to one or more
protected registers via an interface mechanism to enable the
hardware assisted stack, wherein the one or more protected
registers are not accessible to the first software routine or to
the other software routines executing within the computer
system.

7. An integrated circuit (IC) device, comprising:

a shared stack for executing a first software routine;

a hardware assisted stack with a plurality of storage loca-

tions;

at least one control register having one or more bits writ-

able to enable and disable access to the hardware
assisted stack; and

interface circuitry configured to:

detect externally supplied write operations targeting a
specified input/output (I/O) location and, in response,
push data contained in the write operations onto the
hardware assisted stack, and

detect externally supplied read operations targeting the
same or a different specified I/O location and, in
response, pop data from the hardware assisted stack
and return the popped data,

wherein, when the first software routine accesses a
larger portion of data stored in the shared stack rela-
tive to other software routines, the hardware assisted
stack is enabled, the larger portion of data is offloaded
from the shared stack to the hardware assisted stack
mapped to an address space accessible to the first
software routine, a counter is pushed onto the hard-
ware assisted stack that indicates the size of the larger
portion of data, additional access to the hardware
assisted stack is disabled such that only the first soft-
ware routine is able to access the hardware assisted
stack, the larger portion of data offloaded to the hard-
ware assisted stack is identified based on the counter
pushed onto the hardware assisted stack, and the
larger portion of data is restored from the hardware
assisted stack to the shared stack when the first soft-
ware routine is executed.

8. The device of claim 7, wherein the device is a graphics
processing unit (GPU).

9. The device of claim 7, wherein:

data is pushed onto and read from locations in the stack

indicated by a pointer; and

the device further comprises at least one control register

having one or more bits writable to enable automatic

adjustments to the pointer when pushing and popping.

10. The device of claim 7, further comprising a status
register having one or more bits indicating at least one of: a
stack overflow and a stack underflow.

11. The integrated circuit device of claim 7, wherein
enabling access to the hardware assisted stack comprises
writing to one or more protected registers via an interface
mechanism to enable the hardware assisted stack, wherein the
one or more protected registers are not accessible to the first
software routine or to the other software routines executing
within the computer system.

12. A system comprising:

at least one central processing unit (CPU);

one or more software routines executable by the CPU;

US 9,164,766 B1

9

a shared stack accessible by the one or more software
routines; and

a hardware assisted stack mapped to an address space
accessible to at least a first one of the one or more
software routines;

wherein the first software routine is configured to, during
the software routine’s execution by the CPU, determine
that the first software routine accesses a larger portion of
data stored in the shared stack relative to other software
routines, enable access to a hardware assisted stack,
offload the larger portion of data from the shared stack to
the hardware assisted stack mapped to an address space
accessible to the first software routine, push a counter
onto the hardware assisted stack that indicates the size of
the larger portion of data, disable additional access to the
hardware assisted stack such that only the first software
routine is able to access the hardware assisted stack,
identify the larger portion of data offloaded to the hard-
ware assisted stack based on the counter pushed onto the
hardware assisted stack, restore the larger portion of data
from the hardware assisted stack to the shared stack
when the first software routine is executed.

13. The system of claim 12, wherein the first software

routine is further configured to:

perform one or more routines after offloading data from the

shared stack to the hardware assisted stack; and

20

10

subsequently, restore the offloaded data from the hardware

assisted stack to the shared stack.

14. The system of claim 12, wherein the first software
routine is configured to offload data to the hardware assisted
stack by:

writing an index value to a first input/output (I/O) location

to point to the hardware assisted stack; and

write data popped from the shared stack to a second 1/0

location to push that data onto the hardware assisted
stack.

15. The system of claim 12, wherein the hardware assisted
stack resides on a graphics processing unit.

16. The system of claim 15, wherein the first software
routine comprises video basic input/output system (VBIOS)
code.

17. The system of claim 12, wherein enabling access to the
hardware assisted stack comprises writing to one or more
protected registers via an interface mechanism to enable the
hardware assisted stack, wherein the one or more protected
registers are not accessible to the first software routine or to
the other software routines executing within the computer
system.

